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Abstract
Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers
are investigated by high-resolution x-ray scattering. We demonstrate that the statistical
parameters of the dot array can be determined directly from the scattering data without
performing a numerical simulation of the scattered intensity.

1. Introduction

High-resolution x-ray scattering is frequently used for the
investigation of the structure of semiconductor quantum dots
(see the review in [1], for instance).

The aim of an x-ray scattering experiment is to determine
(i) the positions of the dots in the sample, (ii) the mean size and
shape of quantum dots and (iii) the strain field in and around the
dots. Combining the x-ray data with elasticity simulations it
is possible to estimate local chemical composition in quantum
dots.

For the goals (i) and (ii) one can use the chemical
contrast between the dot lattice and the crystal matrix, i.e.
the contrast in the electron density averaged over the unit
cell. The chemical contrast can be investigated in a small-
angle scattering experiment, in which the scattering vector
Q = K f − Ki (Ki, f are the wavevectors of the primary and
scattered beams, respectively) is much smaller than the size
of the first Brillouin zone. For the investigation of strains, the
sensitivity of the hth Fourier component of the electron density
to tiny atomic displacements is used, where h is a reciprocal-
lattice vector (diffraction vector). Then, the scattering vector is
chosen close to the diffraction vector (x-ray diffraction).

Since a scattering experiment yields a reciprocal-space
distribution of the scattered intensity, its interpretation is
not straightforward. Usually, the measured intensity map is
compared with the results of simulations, based on a suitable
structural model, which includes also a numerical simulation
of elastic strains in and around the dots. A direct determination
of the dot structure from the diffraction data can be possible

only using a phase-retrieval algorithm [2]. In this work we
demonstrate that the statistical parameters of the dot positions
(task (i) in the list above) can be determined directly from
the measured diffraction data without any a priori chosen
structural model.

2. Elements of x-ray scattering theory

Since a single dot is much smaller than the extinction length of
x-rays in the lattice (several microns), the scattering process in
the dot volume can be assumed fully kinematical. However,
if the dots are embedded in a thick crystal matrix, multiple
scattering effects in the matrix play a role and the scattering in
the matrix is dynamical. A theoretical description of dynamical
x-ray scattering from a crystal with an array of quantum dots
is rather complicated and usually one uses an experimental
arrangement, in which the deviation from the kinematical
approximation comprises only the effects of absorption and
refraction at the sample surface. These two effects can be
included in the simulation replacing the scattering vector Q
by the corrected scattering vector QT = k f − ki , where
ki, f are the complex wavevectors of the transmitted beams
in the substrate, corresponding to the vacuum waves with the
wavevectors Ki, f . In the following, we omit the subscript T for
simplicity.

In a standard scattering experiment, the number of
irradiated dots is rather large. In addition, the primary x-ray
beam is usually much broader than its coherence width, so
that the irradiated sample contains many coherently irradiated
volumes. Then the measured intensity is an incoherent
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superposition of the contributions of many volumes with
different dot positions. If the number of coherently irradiated
volumes is very large, the scattered intensity can be considered
averaged over the statistical ensemble of all dot configurations

Ig(Q) = 〈
Eg(Q)E∗

g (Q)
〉
, g = 0,h. (1)

In the case of small-angle scattering, this averaging can
be performed directly; for diffraction only an approximative
numerical averaging can be carried out. In both geometries,
the scattered intensity can be expressed in a similar way [1, 3]:

Ig(Q) ∼ ND[〈|Fg(Q)|2〉 − |〈Fg(Q)〉|2] + |〈Fg(Q)〉|2C(Q),

g = 0,h. (2)

Here we have denoted ND the total number of dots in the
coherently irradiated volume:

Fg(Q) =
∫

V
d3re−i(Q−g)·r

× [
χmatrix

g

(
e−ig·u(r) − 1

) +�χg�(r)e−ig·u(r)] (3)

is the structure factor of a single dot,�(r) is the shape function
of a single dot (unity in the dot volume and zero outside
it), χmatrix

g is the gth polarizability coefficient in the matrix,
�χg is the difference of χg in the dot and in the matrix, and
u(r) is the displacement field caused by a single dot. For
small-angle scattering (g = 0), the structural factor equals
�χ0�

FT(Q), where FT denotes the Fourier transformation, so
that the averages 〈|F0|2〉 and |〈F0〉|2 can easily be calculated.
For diffraction, this averaging is a difficult numerical task,
since it must include a complicated numerical simulation of the
displacement field for all dot sizes included in the averaging.

In equation (3) we have denoted

C(Q) =
〈
∑

R,R′
e−i(Q·R−Q∗·R′)

〉

(4)

as the correlation function of the dot positions; in this
expression R,R′ are the random dot position vectors. The form
of the correlation function depends on the type of the statistical
arrangement of the dots in the sample volume.

The first term in equation (2) is a slowly varying function
of Q and usually gives rise to an almost non-structured
background. If the dot positions are at least partially correlated,
the correlation function C(Q) in the second term exhibits sharp
maxima and, as we show in the next section, their forms can be
used for a direct determination of the statistical parameters of
the dot positions, without performing a complicated numerical
evaluation of the averages of the structure factor.

3. Three-dimensional arrangements of self-organized
quantum dots

In this section, we present a simple phenomenological model
describing the positions of self-organized quantum dots in a
periodic multilayer. The multilayer consists of N identical
vertical periods of thickness D, each period contains a dot layer
of material A and a spacer layer and its material B is usually the
same as the material of the buffer layer or substrate underneath.

We assume that lateral position X jn of the j th dot at
the interface n depends only on the lateral positions of the
dots at the preceding interface n − 1. The nature of the
correlation in the dot positions at different interfaces is not
discussed here; as we demonstrated in a series of works [4–6],
this correlation is caused by the strains originating from
buried dots and propagated through the spacer layer. In [7]
another mechanism is proposed leading to the correlation in
the dot positions, namely the influence of the buried dots
on the morphology of the growing surface, which affects the
two-dimensional diffusion of adatoms and consequently the
probability of nucleation of the dots at the growing surface.

Independently of the correlation mechanism, the sequence
of lateral position vectors X j0,X j1, . . . ,X j N represents a
simple Markov chain and for its description we use standard
statistical methods. The correlation function of the dot position
is

C(Q) =
∑

j, j ′

∑

n,n′
e−i(Qz Zn−Q∗

z Zn′ ) 〈e−iQ‖·(X j n−X j ′n′ )〉 , (5)

where R jn = (X jn, Zn) is the three-dimensional position
vector of the dot ( j, n), while its non-random vertical
coordinate Zn = nD is a multiple of the multilayer period
D. In the following, we denote n = 0 as the surface of the
substrate or of a buffer layer under the dot multilayer. In the
case of perfectly arranged dots, the dots will create a three-
dimensional lattice with the basis vectors a1,2,3. We choose
these vectors so that the vectors a1,2 lie in the plane parallel to
the sample surface and the vertical component a3z of the third
vector a3 equals the multilayer period D.

In the following we denote U jn = X jn−X jn−1+a3‖ as the
lateral displacement of the dot ( j, n) with respect to its ideal
lateral position X jn−1 + a3‖ with respect to the preceding dot
( j, n−1). Since we assume that the lateral positions of the dots
at different interfaces n, n′ are correlated only for n = n′ ± 1,
the deviations U jn and U j ′n′ are not correlated, i.e.

〈
U jn · U j ′n′

〉 = σ 2δ j j ′δnn′ (6)

holds, where σ is the root-mean-square (rms) deviation of the
displacements U.

The correlation function C(Q) depends on the correlation
function C0(Q‖) of the positions of the dots at the interface
n = 0. A direct calculation yields

C(Q) = M2 S1(|ψ|2)+ [G0(Q‖)− M2]S1(|ψξ |2)
+ 2Re{M2S2(ψξ,ψ

∗/ξ)+ [G0(Q‖)− M2]
× S2(ψξ,ψ

∗ξ∗)}, (7)

where
ψ(Q) = e−iQ·a3

and
ξ(Q‖) = 〈

e−iQ‖·U〉

is the characteristic function of the probability distribution
of the random displacement U. If we assume a normal
distribution with the rms deviation σ , we obtain

ξ(Q‖) = e−σ 2|Q‖|2/2.

2



J. Phys.: Condens. Matter 20 (2008) 454215 V Holý et al

Figure 1. The correlation function C(Qx , 0, Qz) of an ideally
periodic three-dimensional dot arrangement (a). The panels (b) and
(c) show the correlation function calculated using the LRO and SRO
models, respectively. Notice that the lateral FWHMs �Qx of the
satellites do not depend on Qx within LRO (panel (b)), while they
increase with Qx in the SRO model (c). Within both models, the
vertical FWHMs �Qz increase with increasing |Qx |.

In equation (4) we denoted

S1(a) =
N∑

n=0

an = aN+1 − 1

a − 1

and

S2(a, b) =
N∑

n=1

n−1∑

m=0

anbm

= 1

b − 1

[
(ab)N+1 − ab

ab − 1
− aN+1 − a

a − 1

]
.

The correlation function G0(Q‖) describes the position
of the 0th dot array at the substrate surface. The choice of
this function depends on the sample structure; if the 0th dot
array is deposited at a flat substrate (or buffer) surface, the dot
positions usually obey a two-dimensional short-range-order
(SRO) model [8]. If the substrate surface is lithographically
patterned before the dot growth, the ideal dot positions are
defined by the pattern and a two-dimensional long-range-order
(LRO) model is more appropriate [9].

The two-dimensional SRO correlation function can be
approximated by a direct product of two one-dimensional SRO
correlation functions:

G0(Q‖) = M2
∏

p=1,2

[
1 + 2Re

(
ωp

1 − ωp

)]
. (8)

Here we have denoted M2 the number of dots at an interface
assumed very large:

ωp(Q‖) = 〈
e−iQ‖·bp

〉
, p = 1, 2

and b1,2 are the random vectors connecting the neighboring
dots in the a1,2 directions, respectively. Calculating the
averages ω1,2 we consider that 〈b1,2〉 = a1,2 and we introduce
the rms deviation σ0 of the lengths of the random vectors b1,2.

The correlation function in equation (8) describes an ideal
two-dimensional SRO model and this function diverges for
Q‖ · a1,2 = 0. In order to remove this non-physical divergence
we consider a finite number M of the dots along the a1 or
a2 axes. Then, M2 denotes the number of dots in a domain,
in which the SRO model can be applied; usually the size
of this domain corresponds to the coherence width of the
primary x-ray beam. If the distance of two dots is larger than
this coherence width, they are irradiated incoherently and the
waves scattered from these dots cannot interfere. Using a finite
value of M , the correlation function has the form

G0(Q‖) =
∏

p=1,2

[
M + 2Re

(
ωp

1 − ωp
(M − 1)

− ω2
p

(1 − ωp)2
(1 − ωM−1

p )

)]
. (9)

In a practical calculation, we usually assume that the number
M is random, too, and we average this correlation function over
M . This averaging removes rapid non-physical oscillations
in the correlation function, the period of which is inversely
proportional to M . For this averaging, the binomial probability
distribution of M can be used among others, with a given mean
〈M〉 and a suitably chosen rms dispersion.

In the case of an LRO arrangement of the dots at the
substrate interface the correlation function G0(Q‖) must be
described in another way. We assume that the dot ( j, 0)
deviates from its ideal position j1a1 + j2a2 by a random
displacement U j0. If the displacements of two different dots
are not correlated then

〈
U j0,U j ′0

〉 = σ 2
0 δ j j ′

holds, where σ0 is the rms deviation of the displacement.
A direct calculation yields the following expression for the
correlation function:

G0(Q‖) = M2
[
1 − |ω|2] + |ω|2G id

0 (Q), (10)

where
ω(Q‖) = 〈

e−iQ‖·U j 0
〉 = e−σ 2

0 |Q‖|2/2

and

G id
0 (Q‖) =

M∑

j1=1

M∑

j2=1

e−iQ‖·( j1a1+ j2a2)

is the correlation function of a perfectly ordered two-
dimensional dot array. Similarly to the SRO model, the
parameter M2 denotes the number of dots in one coherent
domain and usually the correlation function G0 is averaged
over M in order to remove non-physical oscillations.

In figures 1 and 2 we present the correlation function
C(Qx , 0, Qz) calculated for a dot multilayer assuming a
tetragonal arrangement of dots (a1 = (a, 0, 0), a2 =
(a, 0, 0), a3 = (0, 0, D)) and N = 10 multilayer periods.
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Figure 2. Panels (a) and (b) show the correlation function C(Qx , 0, 0) calculated in the LRO (a) and SRO (b) models for σ0 = 0 (dotted),
0.01a (dashed) and 0.1a (full lines). In (c) and (d), the functions C(Qx = const, 0, Qz) are plotted for the first lateral maximum
(Qx = 2π/a) (c) and the second maximum (Qx = 4π/a) (d). The curves in (c) and (d) were calculated for σ = 0 (dotted), 0.05D (dashed)
and 0.1D (full lines). After normalization to their maximum values, the curves in (c) and (d) are identical for LRO and SRO models.

Figure 3. Reciprocal-space maps of the PbSe/PbEuTe multilayers
(samples #1 and #2) measured in symmetric coplanar diffraction 111.
The step of the intensity contours is 100.2.

From figure 1 it is obvious that the correlation function exhibits
satellite maxima in the points of the lattice reciprocal to the
averaged dot lattice. From the dependence of the full widths
at half-maximum (FWHMs) �Qx,z of these maxima on Qx,z

we can determine the type of correlation function and the
parameters σ, σ0, and the averaged number 〈M〉. In the
following, this number will be denoted as M , for simplicity.

Due to the ideal vertical periodicity of the multilayer,
the two-dimensional distribution of the C values is ideally
periodical along Qz with the period 2π/D. In the case of
the LRO arrangement of the dots at the substrate interface,
the lateral FWHM �Qx = 2π/(Ma) is constant and it is
inversely proportional to the size of the coherent domain. This
behavior can be seen in figure 1(b), where the width of the
lateral satellites along Qx is constant and independent of Qx .
For the SRO arrangement, the lateral FWHM increases with

increasing Qx . The satellites in figure 1(c) in the Qx direction
become broader indeed for larger |Qx |. In the limit of very
large coherent domain (M → ∞), �Qx → (Qxσ0)

2/a holds
and the lateral FWHM of the satellites is proportional to the
square of the satellite order.

In the LRO and SRO models, the vertical shapes of the
satellites determined by the function C(Qx = const, Qz) are
similar. If we normalize the functions C(Qx = const, Qz)

to their maxima, both LRO and SRO models yield the same
profiles C(Qx = const, Qz). This is obvious from figures 2(c)
and (d), where we have plotted the vertical profiles C(Qx =
const, Qz) of the satellites for the first- (figure 2(c)) and
second-order (figure 2(d)) lateral satellites. The profiles are
normalized to their maxima and identical functions were
obtained from both models. Therefore, the FWHM �Qz is
the same for SRO and LRO arrangements and it depends on σ
and on the number N of the multilayer periods. In the limit
N → ∞, �Qz → (Qxσ)

2/D holds, similarly to the �Qx in
the SRO model.

From this numerical analysis a simple recipe follows
how to determine the parameters of the dot ordering from
the measured intensity map. From the dependence of the
horizontal FWHM �Qx of the satellites on Qx we can
distinguish between two ordering models introduced above:
if the FWHM does not depend on Qx , the LRO model is
applicable, and from the FWHM we determine the average
number M of the dots in the coherent domain. If the
FWHM �Qx grows with increasing |Qx |, the SRO model is
appropriate and from the fit of the experimental dependence
�Qx(Qx) we determine the rms deviation σ0 and the average
number M of the dots in the coherent domain. The dependence
of the vertical FWHM �Qz on Qx is the same for both
models; the fit of this dependence to the theory yields the rms
deviation σ .

From the analysis above it follows that the FWHMs
�Qx and �Qz depend only on the lateral coordinate Qx

(figures 1(a)–(c) are perfectly periodic along Qz). A possible
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Figure 4. The Qx dependence of the vertical (a) and lateral (b) FWHMs of the intensity satellites of the PbSe/PbEuTe multilayers (points) and
their theoretical fits (lines).

Figure 5. Reciprocal-space map of a Ge/Si multilayer measured in
the coplanar asymmetric 224 diffraction.

dependence of the experimental FWHMs on Qz could be
ascribed to the Qz dependence of the resolution function of the
experimental set-up or to a non-periodicity of the multilayer
along z.

4. Experimental examples

In this section we present two experimental examples
demonstrating the application of the above theory. As the first
example, figure 3 shows the intensity maps of PbSe/PbEuTe
multilayers deposited by molecular beam epitaxy (MBE) on a
PbTe(111) buffer layer on a BaF2 substrate. The samples differ
in the thicknesses of the PbEuTe spacer layers—in sample #1
the smaller thickness of 36 nm gives rise to a strong vertical
ordering of the PbSe layers, while in the case of thicker spacer
layer (47 nm, sample #2) the PbSe dots create a rhombohedral
lattice (see [6] for more details). The measurements have
been carried out at ESRF Grenoble, in symmetric coplanar
diffraction 111, using the wavelength 1.54 Å. In figure 3 we
denoted qz = Qz − hz and hz is the vertical coordinate of the
diffraction vector h = 111.

The maxima in the maps correspond to the local maxima
of the correlation function C(Q). The map of sample #1
exhibits only horizontal sheets indicating that the dots are

correlated mainly vertically. The maxima in the map of
sample #2 create a well-developed three-dimensional lattice;
from their positions it follows that the lattice of the dots is
rhombohedral. Figure 4 shows the dependence of the FWHMs
�Qx,z of the maxima on Qx . In sample #1 the ordering
of the dots at the 0th interface is very weak and σ0 is very
large. Therefore, no distinct lateral satellites are present in
its intensity map in figure 3 and we could determine only the
dependence �Qz(Qx). The parabolic dependence �Qz(Qx)

confirms the validity of the ordering model formulated above;
from the fit to the theory the value σ = (5 ± 1) nm follows.

For sample #2 the rms deviation σ is very small, since
the vertical FWHM �Qz does not depend on Qx ; we estimate
σ < 0.2 nm. The dependence �Qx(Qx) is nearly parabolic,
so that the SRO model for the ordering of the dots at the 0th
g interface is applicable. From the fit to theory we determined
σ0 = (6 ± 1) nm and M = 7 ± 2. Therefore, in sample
#2, the dot positions at subsequent interfaces are almost ideally
correlated; the disorder of the dots stems from the dots at the
buffer surface.

In the second example we investigate the positions of Ge
dots in an Si/Ge multilayer deposited by MBE on an Si(001)
surface, on which a periodic square array of pits have been
lithographically created (see [10] for details). An asymmetric
coplanar reciprocal-space map measured in diffraction 224 is
plotted in figure 5, where we have denoted qx,z = Qx,z − hx,z

the reciprocal-space vector relative to the reciprocal-lattice
point h = 224. The measurement has been carried out at
ESRF Grenoble, using the wavelength 1.5 Å. Sharp satellite
maxima indicate that the dots are very well correlated both
horizontally and vertically. A detailed analysis of the FWHMs
(figure 6) demonstrates that the LRO model (equations (7) and
(10)) is valid—in contrast to the previous example the lateral
satellite FWHMs �Qx do not depend on Qx . From the fit of
the vertical FWHMs �Qz we obtain σ = (3.5 ± 0.5) nm,
while the lateral FWHMs yield M = 6 ± 1. The resulting size
Ma = 600 nm of the coherent domain is comparable with the
coherence width of the primary radiation.

5. Summary

We demonstrated that from the dependence of the widths of
the intensity satellites on their position (Qx , Qz) in reciprocal
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Figure 6. The qx dependence of the vertical (a) and lateral (b) FWHMs of the intensity satellites of the Ge/Si multilayer and their theoretical
fits (lines).

space it is possible to determine the type of correlation of
the dot positions and to estimate the rms deviations of the
dot distances. This procedure is direct and does not require
any numerical simulation of elastic strains and diffracted
intensities.

Two examples shown in this paper, namely PbSe dots
in PbSe/PbEuTe multilayers and Ge dots in SiGe multilayers
deposited on a pre-patterned Si substrate, represent two
different cases of the self-organization. In the former case,
the dots at the first interface on a PbTe buffer are distributed
according to a short-range-order model, while in the latter
case a long-range order of the dot positions on the substrate
surface is induced by the pre-patterning. The dot positions at
subsequent interfaces are correlated to the dots underneath, and
for their positions the short-range-order model can be used in
both systems.
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